
SUBGLACIAL PLUMES

1. Introduction

These notes are an unoffical supplement to the review paper ‘Subglacial Plumes’. They doc-

ument more fully the solutions shown in section 3 of that paper. The models are solved and

figures produced using Matlab files plume.m, plume_subglacial.m, plume_submarine.m,

and plume_point.m.

2. Background

2.1. Equation of state

Buoyancy is related to salinity and temperature (primarily salinity) by

∆ρ

ρo
=
ρa − ρ
ρo

= βS(Sa − S)− βT (Ta − T ), (1)

where βS and βT are the saline and thermal expansion coefficients, and ρa is the ambient

density, and ρo is a reference density. The liquidus is defined by

TL(S) = To + λz − Γ(S − Si), (2)

where To is a reference, λ is the Clapeyron slope, Γ is the dependence of freezing point on

salinity, and Si ≈ 0 is the salinity of the ice. The temperature excess (thermal driving) is

∆T = T = TL(S). (3)

and effective excess meltwater temperature is defined as

∆T efi = − L̃
c

:= −L+ ci(Ti − TL(Si))

c
, (4)

where c and ci are the specific heat capacities of water and ice respectively, Ti is the

temperature of the ice, L is the latent heat, and L̃ is a modified latent heat defined by this

expression.

2.2. Melting parameterisation

We write the three-equation formulation for melting in the form ṁ = MU where M(∆T, S)

is a melt-rate coefficient. Together with the interfacial temperature Tb and salinity Sb, this

satisfies

Tb = TL(Sb), M(Tb − T efi ) = StT (T − Tb), M(Sb − Si) = StS(S − Sb). (5)

These equations are solved to give

Sb =
StSS +MSi

StS +M
, Tb =

StSTL(S) +MTL(Si)

StS +M
, (6)

with M being the positive solution of the quadratic equation

M2∆T efi +M
[
StS∆T efi + StT∆T + (StS − StT )Γ(S − Si)

]
+ StSStT∆T = 0. (7)
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Solutions to this equation are shown in figure 1. Note that salinity can be expressed in

terms of ∆ρ and ∆T by

S = Si +
1

βS + βTΓ

[
βS(Sa − Si)− βT (Ta − TL(Si))−

∆ρ

ρo
+ βT∆T

]
. (8)

If Γ(S − Si)� ∆T the solution is approximately

M ≈ −StT
∆T

∆T efi
= StT

c∆T

L̃
. (9)

The two-equation formulation uses this expression but with a bulk Stanton number St

replacing the thermal Stanton number StT to account roughly for the effect of higher salinity,

in which case

ṁ = −StU
∆T

∆T efi
= StU

c∆T

L̃
. (10)
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Figure 1

Melt-rate coefficient M(∆T, S) for the three-equation formulation as a function for different values

of salinity S (at 5 g kg−1 intervals). The dashed line shows the two-equation formulation (10).
The right-hand panel shows the corresponding interfacial salinities.

Table 1 Typical parameter values.

βS 7.86× 10−4

βT 3.87× 10−5 C−1

To 8.32× 10−2 C

λ 7.61× 10−4 C m−1

Γ 5.73× 10−2 C

g 9.8 m s−2

c 3974 J kg C−1

ci 2009 J kg C−1

L 3.35× 105 J kg−1

Cd 2.5× 10−3

StT = C
1/2
d ΓT 1.1× 10−3

StS = C
1/2
d ΓS 3.1× 10−5

St = C
1/2
d ΓTS 5.9× 10−4

E0 3.6× 10−2

α 0.1

3. Plume model

The situation considered is shown in figure 2. The coordinate X denotes distance along the

ice front, which is inclined at angle φ to the horizontal. We consider solutions in which φ

is constant, although in principle it could be allowed to change with X. The model is

∂

∂X
(DU) = EU, (11)
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Figure 2

(a) A one-dimensional plume with velocity U , thickness D, salinity S and temperature T . (b)

Typical profiles of ambient salinity, liquidus, temperature and density together with ambient

temperature excess ∆Ta. (c) Lighter colours show typical properties of the plume.

∂

∂X

(
DU2) = D∆ρ g sinφ/ρo − CdU2, (12)

∂

∂X
(DU∆ρ) = ṁ∆ρefi + sinφ

dρa
dz

DU, (13)

∂

∂X
(DU∆T ) = EU∆Ta + ṁ∆T efi − λ sinφDU. (14)

Here D is the thickness of the plume, U is the velocity (for which a top-hat profile is

assumed), ∆ρ = ρa−ρ is the buoyancy, and ∆T = T −TL(S) is the temperature excess. In

addition, E is an entrainment coefficient, Cd is a drag coefficient, ρo is a reference density,

g is the gravitational acceleration, ρa(z) is the ambient density profile, and λ is the rate of

change of the freezing temperature with depth.

The melt rate ṁ is parameterised in terms of ∆T , S and U as described in the previous

section. We mostly use the two-equation approximation (10).

The ambient density gradient is given by

1

ρo

dρa
dz

= βS
dSa
dz
− βT

dTa
dz

. (15)

We also have definitions for the ambient thermal driving,

∆Ta = Ta − TL(Sa), (16)

the effective meltwater buoyancy,

∆ρefi /ρo = βS(Sa − Si)− βT (Ta − T efi ), (17)

and the subglacial discharge buoyancy,

∆ρsg/ρo = βS(Sa0 − Si)− βT (Ta0 − TL(Si)). (18)

Note that ∆T efi and ∆ρefi can in principle vary with position due to changes in the ice

temperature, the ambient density and the pressure-dependence of the freezing point; how-

ever the changes are very small, and we will treat both of these quantities as constants,
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Figure 3

Solutions to (11)-(14) for a vertical ice front (φ = π/2) with ambient temperature and salinity
profiles shown by grey lines on the right-hand plots (uniform up to a pycnocline around 100 m

depth, with initial thermal driving ∆Ta0 = 4 C). Darker lines are for subglacial discharge

qsg = 10−2 m2 s−1, Usg = 0 m s−1, ∆Tsg = 0 C. Lighter lines are for no subglacial discharge.
Black dashed lines show the approximate solutions (22) and (43).

taking values ∆T efi0 and ∆ρefi0 . Any subscript 0 denotes an ‘initial’ value at the subglacial

discharge point.

Initial conditions are

DU = qsg, U = Usg, ∆ρ = ∆ρsg, ∆T = ∆Tsg at X = 0. (19)

We assume that the buoyancy flux qsg∆ρsg may be significant, but the mass flux qsg is itself

‘small’. In this case, U and T adjust rapidly from their initial values Usg and Tsg over a

small boundary layer near X = 0. To ignore that boundary layer, we can replace the initial

conditions with the appropriate ‘matching’ conditions

DU = qsg, U =

(
qsg∆ρsgg sinφ

ρo(E + Cd)

)1/3

, ∆ρ = ∆ρsg, ∆T =
E

E + St
∆Ta0. (20)

If there is no subglacial discharge, the small X behaviour is instead given by

D ∼ 2

3
EX, U ∼

(
E∆ρg sinφ

ρo(2E + 3
2
Cd)

)1/2

X1/2, ∆ρ =
St

E

c∆T

L̃
∆ρefi , ∆T =

E

E + St
∆Ta0.

(21)

An example solution is shown in figure 3.

4. Plumes driven by subglacial discharge

4.1. Uniform ambient

For small enough X the buoyancy flux is dominated by the subglacial discharge buoyancy

flux. If the ambient conditions are uniform, with thermal driving ∆Ta0 the solution is given

by (Jenkins 2011)

D = EX, U =

(
qsg∆ρsgg sinφ

ρo(E + Cd)

)1/3

, ∆ρ = ∆ρsg
qsg
DU

, ∆T =
E

E + St
∆Ta0. (22)
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The melt rate (which is decoupled from the plume dynamics in this case) is given by

ṁ =
ESt

E + St

c∆Ta0

L̃

(
qsg∆ρsgg sinφ

ρo(E + Cd)

)1/3

. (23)

4.2. Non-dimensionalisation

We non-dimensionalise the model by inserting a length scale [X] = ` into this solution to

define appropriate scales for each of the variables (` is arbitrary at this point), and then

write

X = [X]X̂, D = [D]D̂, U = [U ]Û , ∆ρ = [∆ρ]∆ρ̂, ∆T = [∆T ]∆T̂ , ṁ = [ṁ] ˆ̇m,

(24)

where the hatted quantities are all dimensionless. The variable scales defined in this way

are

[D] = E `, [U ] =

(
qsg∆ρsgg sinφ

ρo(E + Cd)

)1/3

, [∆ρ] =
(qsg∆ρsg)

2/3

E`

(
ρo(E + Cd)

g sinφ

)1/3

,

(25)

[∆T ] =
E

E + St
∆Ta0, [ṁ] =

ESt

E + St

c∆Ta0

L̃

(
qsg∆ρsgg sinφ

ρo(E + Cd)

)1/3

. (26)

We then have the following equations for the dimensionless variables,

∂

∂X̂

(
D̂Û

)
= Û , (27)

∂

∂X̂

(
D̂Û2

)
= (1 + Ĉd)D̂∆ρ̂− ĈdÛ2, (28)

∂

∂X̂

(
D̂Û∆ρ̂

)
=

`

`sg
ˆ̇m−

(
`

`ρ

)2

D̂Û , (29)

∂

∂X̂

(
D̂Û∆T̂

)
= (1 + Ŝt )Û∆T̂a − Ŝt ˆ̇m− `

`T
(1 + Ŝt )D̂Û , (30)

where ˆ̇m = Û∆T̂ and we have defined the ratios

Ĉd =
Cd
E
, Ŝt =

St

E
, ∆T̂a =

∆Ta
∆Ta0

. (31)

Note that we expect E = E0 sinφ, so these parameters vary with the slope of the interface.

We expect Ĉd � 1 and Ŝt � 1 for a vertical interface, and (possibly) Ĉd � 1 and Ŝt � 1

for a shallow interface. We will therefore consider the limiting scaled solutions for each of

the limits Ĉd, Ŝt → 0 and Ĉd, Ŝt →∞, since these book-end the behaviour for intermediate

values. The ratio ∆T̂a can be taken to be 1 if the ambient thermal driving is uniform, as

we assume in the sample solutions below.

We have also defined three characteristic length scales,

`sg =
E + St

ESt

L̃

c∆Ta0

(
ρo(E + Cd)

g sinφ

)1/3
(qsg∆ρsg)

2/3

∆ρefi
, (32)

`ρ =

(
ρo(E + Cd)

g sinφ

)1/6
(qsg∆ρsg)

1/3

(E sinφ)1/2

∣∣∣∣dρadz

∣∣∣∣−1/2

, (33)
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`T =
∆Ta0
λ sinφ

, (34)

where are respectively the scale over which submarine melting contributes to the buoyancy

flux, the scale over which the ambient stratification becomes important, and the scale over

which the depth-dependence of the freezing point becomes important.

To consider how these influence the behaviour of the plume, we consider in turn the

case in which each of these dominates the others. That is, we select one of these to be the

length scale `, and suppose it is much smaller than the other two length scales so that their

ratios may be neglected in (27)-(28). The behaviour when more than one of these come

into play at the same time is more complicated and is not considered here. If ` is much

smaller than all of these length scales, none of these effects is important and the solution is

just the scaled version of (22), that is (for ∆T̂a = 1),

D̂ = X̂, Û = 1, ∆ρ̂ = X̂−1, ∆T̂ = ˆ̇m = 1. (35)

Note that since the length scale does not enter the melting rate scaling, the melt rate

always scales with (23), modified by the dimensionless shape factor ˆ̇m(X̂) found in the

solutions below. This shape factor is generally decreasing with X̂ indicating that the largest

melt rates are near the starting point of the plume.

4.3. Submarine melting

In the case ` = `sg, and neglecting `sg/`ρ � 1 and `sg/`T � 1, the dimensionless equations

are
∂

∂X̂

(
D̂Û

)
= Û ,

∂

∂X̂

(
D̂Û2

)
= (1 + Ĉd)D̂∆ρ̂− ĈdÛ2, (36)

∂

∂X̂

(
D̂Û∆ρ̂

)
= ˆ̇m,

∂

∂X̂

(
D̂Û∆T̂

)
= (1 + Ŝt )Û∆T̂a − Ŝt ˆ̇m, (37)

with ˆ̇m = Û∆T̂ . Solutions are shown in figure 4. For large X̂ these asymptote towards

D̂ ∼ 2

3
X̂, Û ∼

(
1 + Ĉd

2 + 3
2
Ĉd

)1/2

X̂1/2, ∆ρ̂ = ∆T̂ = 1, ˆ̇m =

(
1 + Ĉd

2 + 3
2
Ĉd

)1/2

X̂1/2,

(38)

which corresponds to the solution found below for a submarine melt driven plume. Note

that the buoyancy scale in this case has become [∆ρ] = [ṁ]∆ρefi /E[U ], indicating that the

plume’s buoyancy is set by the balance between the densities of the submarine melt and

the entrained water. Note also that the melt rate is always larger than what would occur

in the absence of subglacial discharge.

4.4. Linear stratification

If the ambient stratification −dρa/dz is constant we take ` = `ρ and the equations become

∂

∂X̂

(
D̂Û

)
= Û ,

∂

∂X̂

(
D̂Û2

)
= (1 + Ĉd)D̂∆ρ̂− ĈdÛ2, (39)

∂

∂X̂

(
D̂Û∆ρ̂

)
= −D̂Û , ∂

∂X̂

(
D̂Û∆T̂

)
= (1 + Ŝt )Û∆T̂a − Ŝt ˆ̇m, (40)

with ˆ̇m = Û∆T̂ . Solutions are shown in figure 5. The plume becomes negatively buoyant

at position X̂neg and then stops at X̂stop where the velocity goes to zero and the thickness

of plume tends to infinity. These positions are marked in the figure.
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Figure 4

Solutions to (36)-(37) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1. Open circles and dashed lines show the solution for no submarine melting (22), valid at
small X̂, and the asymptotic behaviour (38) for large X̂.
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Figure 5

Solutions to (39)-(40) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1. Dashed lines show the uniform ambient solution (22).

4.5. Depth-dependence of the freezing point

In this case we take ` = `T and the equations become

∂

∂X̂

(
D̂Û

)
= Û ,

∂

∂X̂

(
D̂Û2

)
= (1 + Ĉd)D̂∆ρ̂− ĈdÛ2, (41)
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Figure 6

Solutions to (41)-(42) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1. Dashed lines show the solution not accounting for depth-dependence of the freezing
point (22).

∂

∂X̂

(
D̂Û∆ρ̂

)
= 0,

∂

∂X̂

(
D̂Û∆T̂

)
= (1 + Ŝt )Û∆T̂a − Ŝt ˆ̇m− (1 + St )D̂Û , (42)

with ˆ̇m = Û∆T̂ . Note that only the temperature equation is changed in this case, and

since this is decoupled from the other equations, the plume behaves in the same way as the

uniform solution. Only the melt rate is changed because of the decrease in T̂ . Solutions are

shown in figure 6 for the case of uniform thermal driving. The plume becomes supercooled

at a point X̂freeze and the melt rate is subsequently negative. When considering the depth-

dependence of the freezing point it is important to note that ∆T̂a = 1 does not correspond

to a uniform ambient temperature, which would instead correspond to non-uniform thermal

driving ∆T̂a = 1 − X̂. The solution for that case is shown in figure 7 (the calculation is

stopped at X̂ = 1 in this case since larger X̂ would then correspond to supercooled ambient

water).

5. Plumes driven by submarine melting

We now consider plumes with no subglacial discharge, for which the initial behaviour is

given by (21).

5.1. Uniform ambient

For uniform ambient conditions the solution is (Magorrian & Wells 2016)

D =
2

3
EX, U =

(
E∆ρg sinφ

ρo(2E + 3
2
Cd)

)1/2

X1/2, ∆ρ =
St

E

c∆T

L̃
∆ρefi , ∆T =

E

E + St
∆Ta0.

(43)
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Figure 7

Solutions to (41)-(42) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1− X̂. Dashed lines show the solution not accounting for depth-dependence of the freezing
point (22).

The corresponding melt rate increases with the square root of distance,

ṁ ∼
(

ESt

E + St

c∆Ta0

L̃

)3/2
(

∆ρefi g sinφ

ρo(2E + 3
2
Cd)

)1/2

X1/2. (44)

5.2. Non-dimensionalisation

As earlier, we insert an arbitrary length scale ` into this solution to define scales for each of

the variables, and then convert the equations to dimensionless form. In this case, we obtain

∂

∂X̂

(
D̂Û

)
= 3

2
Û , (45)

∂

∂X̂

(
D̂Û2

)
= (2 + 3

2
Ĉd)D̂∆ρ̂− 3

2
ĈdÛ

2, (46)

∂

∂X̂

(
D̂Û∆ρ̂

)
= 3

2
ˆ̇m− `

`ρ
D̂Û , (47)

∂

∂X̂

(
D̂Û∆T̂

)
= 3

2
(1 + Ŝt )Û∆T̂a − 3

2
Ŝt ˆ̇m− `

`T
(1 + Ŝt )D̂Û , (48)

with ˆ̇m = Û∆T̂ . The parameters Ĉd = Cd/E, Ŝt = St /E and ∆T̂a = ∆Ta/∆Ta0 are as

before. There ares two characteristic length scales in this case, given by

`ρ =
St

E + St

c∆Ta0

L̃

∆ρefi
sinφ

∣∣∣∣dρadz

∣∣∣∣−1

, (49)

`T =
∆Ta0
λ sinφ

. (50)
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Figure 8

Solutions to (52)-(53) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1. Dashed lines show the uniform ambient solution (43).

These are respectively the scale over which the ambient stratification becomes important

and the scale over which the depth-dependence of the freezing point becomes important.

We consider each in turn.

For small X̂ the solutions are the scaled version of (43), that is (for ∆T̂a = 1),

D̂ = X̂, Û = X̂1/2, ∆ρ̂ = ∆T̂ = 1, ˆ̇m = X̂1/2. (51)

5.3. Linear stratification

Setting ` = `ρ and neglecting `/`T � 1 we have the dimensionless model

∂

∂X̂

(
D̂Û

)
= 3

2
Û ,

∂

∂X̂

(
D̂Û2

)
= (2 + 3

2
Ĉd)D̂∆ρ̂− 3

2
ĈdÛ

2, (52)

∂

∂X̂

(
D̂Û∆ρ̂

)
= 3

2
ˆ̇m− D̂Û , ∂

∂X̂

(
D̂Û∆T̂

)
= 3

2
(1 + Ŝt )Û∆T̂a − 3

2
Ŝt ˆ̇m, (53)

with ˆ̇m = Û∆T̂ . Solutions to these equations are shown in figure 8. The plume becomes

negatively buoyant at position X̂neg and stops at X̂stop. The scaling for the melt rate in

this case is

[ṁ] =
∆ρefi
E

(
gE

ρo(2E + 3
2
Cd)

)1/2 ∣∣∣∣dρadz

∣∣∣∣−1/2(
ESt

E + St

c∆Ta0

L̃

)2

, (54)

which is to be multiplied by the dimensionless shape factor in figure 8. Note that it varies

quadratically with temperature.

5.4. Depth-dependence of the freezing point

Setting ` = `T and neglecting `/`ρ � 1 we have the dimensionless model

∂

∂X̂

(
D̂Û

)
= 3

2
Û ,

∂

∂X̂

(
D̂Û2

)
= (2 + 3

2
Ĉd)D̂∆ρ̂− 3

2
ĈdÛ

2, (55)
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Figure 9

Solutions to (55)-(56) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1. Dashed lines show the solution not accounting for depth-dependence of the freezing
point (43).

∂

∂X̂

(
D̂Û∆ρ̂

)
= 3

2
ˆ̇m,

∂

∂X̂

(
D̂Û∆T̂

)
= 3

2
(1 + Ŝt )Û∆T̂a − 3

2
Ŝt ˆ̇m− (1 + Ŝt )D̂Û , (56)

with ˆ̇m = Û∆T̂ . Solutions to these equations are shown in figure 9 for the case of ∆T̂a = 1

and in figure 10 for the case of ∆T̂a = 1 − X̂, which corresponds to uniform ambient

temperature (note that the calculation is stopped at X̂ = 1 in this case since larger X̂ would

then correspond to supercooled ambient water). The second of these solutions corresponds

to something like the scaled melt rate ˆ̇m used by Lazeroms et al. (2018). The scaling for

the melt rate in this case is

[ṁ] =

(
L̃∆ρefi g

cλρo(2E + 3
2
Cd)

)1/2(
ESt

E + St

)3/2(
c∆Ta0

L̃

)2

, (57)

which also varies quadratically with temperature.

5.5. Velocity-independent melt rate

The above solutions assumed that the melt rate scales with the plume velocity. Alter-

natively, if the melt rate is assumed to be independent of the velocity of the plume, the

solution for uniform ambient conditions is (McConnochie & Kerr 2016),

D =
3

4
EX, U =

(
ṁ∆ρefi g sinφ

ρo(
5
4
E + Cd)

)1/3

X1/3, ∆ρ =
4

3

(
ρo(

5
4
E + Cd)

∆ρefi g sinφ

)1/3
ṁ2/3∆ρefi
EX1/3

.

(58)

The temperature only has a straightforward dependence on X in the case that the effect of

melting on temperature is insignificant (−ṁ∆T efi � E∆Ta0) in which case ∆T = ∆Ta0.

Note that the temperature is treated as decoupled from the plume here, although in reality

the temperature is likely to be important in determining what the melt rate ṁ actually is.
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Figure 10

Solutions to (55)-(56) with Ĉd = Ŝt = 0 (darker shading) and Ĉd = Ŝt =∞ (lighter shading), and

∆T̂a = 1− X̂. Dashed lines show the solution not accounting for depth-dependence of the freezing
point (43).

There is a characteristic length scale over which the stratification becomes important

in this case given by

`ρ =
1

sinφ

(
4

3

)3/4(ρo( 5
4
E + Cd)

gE

)1/4
(
ṁ∆ρefi
E

)1/2 ∣∣∣∣dρadz

∣∣∣∣−3/4

. (59)

Inserting this scale into the uniform solution (58) defined scales for the other variables, and

the dimensionless model is

∂

∂X̂

(
D̂Û

)
= 4

3
Û ,

∂

∂X̂

(
D̂Û2

)
= ( 5

3
+ 4

3
Ĉd)D̂∆ρ̂− 4

3
ĈdÛ

2, (60)

∂

∂X̂

(
D̂Û∆ρ̂

)
= ˆ̇m− D̂Û , ∂

∂X̂

(
D̂Û∆ρ̂

)
= 4

3
Û∆T̂a, (61)

where we have neglected the depth-dependence of the freezing point and the contribution

of melting to cooling for simplicity. Solutions to this model are shown in figure 11.

6. Point source plumes

The model for a point source plume with radius b is

∂

∂X

(
π
2
b2U

)
= απbU, (62)

∂

∂X

(
π
2
b2U2) = π

2
b2∆ρg sinφ/ρo, (63)

∂

∂X

(
π
2
b2U∆ρ

)
= 2bṁ∆ρefi +

dρa
dz

π
2
b2U, (64)

12 I. J. Hewitt
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Figure 11

Solutions to (60)-(61) with Ĉd = 0 (darker shading) and Ĉd =∞ (lighter shading), and ∆T̂a = 1.

Dashed lines show the uniform ambient solution (58).

∂

∂X

(
π
2
b2U∆T

)
= απbU∆Ta + 2bṁ∆T efi , (65)

with ṁ = StUc∆T/L̃ and where the entrainment coefficient is conventionally written as α

in this case. We have neglected both wall drag and the depth-dependence of the freezing

point.

Initial conditions are

π
2
b2U = Qsg, U = Usg, ∆ρ = ∆ρsg, ∆T = ∆Tsg at X = 0. (66)

6.1. Uniform ambient

For uniform ambient conditions and assuming an ideal source (so only the buoyancy flux

from the initial conditions contributes), we have solution (Slater et al. 2016)

b =
6α

5
X, U =

5

6α

(
9α

5π

)1/3
(Qsg∆ρsgg sinφ)1/3

ρ
1/3
o X1/3

, ∆ρ =
Qsg∆ρsg
π
2
b2U

, ∆T =
πα

πα+ 2St
∆Ta0.

(67)

The point-wise melt rate ṁ decreases with X due to the decrease in velocity, but once

multiplied by the width b the overall melt rate 2bṁ increases with X.

6.2. Non-dimensionalisation

We insert a length scale ` into the uniform solution (67) to define scales for each of the

variables and then arrive at the dimensionless model

∂

∂X̂

(
b̂2Û

)
= 5

3
b̂Û , (68)

∂

∂X̂

(
b̂2Û2

)
= 4

3
b̂2∆ρ̂, (69)
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∂

∂X̂

(
b̂2Û∆ρ̂

)
=

(
`

`sg

)5/3

b̂ ˆ̇m−
(
`

`ρ

)8/3

b̂2Û , (70)

∂

∂X̂

(
b̂2Û∆T̂

)
= 5

3
(1 + St )b̂Û∆T̂a − 5

3
St ˆ̇m, (71)

where ˆ̇m = Û∆T̂ and we have defined the ratio Ŝt = 2St /πα in this case. The characteristic

length scales over which submarine melting contributes to buoyancy flux, and over which

the ambient stratification is important, are given by

`sg =

(
5πρo

9αg sinφ

)1/5(
πα+ 2St

2Stπα

L̃

c∆Ta0

)3/5
(Qsg∆ρsg)

2/5

(∆ρefi )3/5
, (72)

and

`ρ =
33/8ρ

1/8
o

π1/4(g sinφ)1/8

(
5

9α

)1/2 ∣∣∣∣dρadz

∣∣∣∣−3/8

(Qsg∆ρsg)
1/4. (73)

6.3. Submarine melting

Setting ` = `sg and assuming `/`ρ � 1 we have the dimensionless equations governing the

transition to a submarine melt-driven plume. These are

∂

∂X̂

(
b̂2Û

)
= 5

3
b̂Û ,

∂

∂X̂

(
b̂2Û2

)
= 4

3
b̂2∆ρ̂, (74)

∂

∂X̂

(
b̂2Û∆ρ̂

)
= b̂ ˆ̇m,

∂

∂X̂

(
b̂2Û∆T̂

)
= 5

3
(1 + St )b̂Û∆T̂a − 5

3
St ˆ̇m, (75)

with ˆ̇m = Û∆T̂ . Solutions are shown in figure 12. For large X̂, the solutions asymptote

towards

b̂ =
2

3
X̂, Û =

(
4

15

)1/2

X̂1/2, ∆ρ̂ =
3

5
, ∆T̂ = 1, ˆ̇m =

(
4

15

)1/2

X̂1/2. (76)

6.4. Linear stratification

Setting ` = `ρ and assuming `/`sg � 1 we have the dimensionless equations

∂

∂X̂

(
b̂2Û

)
= 5

3
b̂Û ,

∂

∂X̂

(
b̂2Û2

)
= 4

3
b̂2∆ρ̂, (77)

∂

∂X̂

(
b̂2Û∆ρ̂

)
= −b̂2Û , ∂

∂X̂

(
b̂2Û∆T̂

)
= 5

3
(1 + St )b̂Û∆T̂a − 5

3
St ˆ̇m, (78)

with ˆ̇m = Û∆T̂ . Solutions are shown in figure 13.

7. Two-dimensional plumes with rotation

To consider the effects of rotation we extend the model to two dimensions. The simplest

model is

∇ · (DU) = E|U|, (79)

∇ · (DUU)− fDV = D∆ρg sinφ/ρo − Cd|U|U, (80)
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Figure 12

Solutions to (74)-(75) with ∆T̂a = 1. The solution is independent of St . Dashed lines show the

solution with no submarine melting (67), valid at small X̂, and the asymptotic behaviour (76) for
large X̂.
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Figure 13

Solutions to (77)-(78) with ∆T̂a = 1. The solution is independent of St . Dashed lines show the

uniform ambient solution (67).

∇ · (DUV ) + fDU = −Cd|U|V, (81)

∇ · (DU∆ρ) = ṁ∆ρefi , (82)

∇ · (DU∆T ) = E|U|∆Ta + ṁ∆T efi , (83)

in which ṁ = St |U|c∆T/L̃, and U = (U, V ). We have specialised to the case of a uniform

sloping ice shelf (in the x direction; strictly we should perhaps convert sinφ to tanφ given
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Figure 14

Solution to (85)-(88) for ∆T̂a = 1, Ĉd = 6.9 and f̂ = −1. The solution also has ∆ρ̂ = ∆T̂ = 1, and

for x̂� 1 it has D̂ ∼ x̂, Û ∼ x̂1/2, in agreement with the one-dimensional solution (43). For
x̂, ŷ � 1 it has D̂ ∼ ŷ, V̂ ∼ −1/f̂ , corresponding to geostrophic balance with the plume growing

across the slope.

that the x coordinate is how horizontal, but we have in mind that φ is small so maintain

sinφ for consistency), and we have ignored the possibility of adding diffusion terms and

pressure gradients associated with variations in plume thickness. We also ignore the depth-

dependence of the freezing point and the possibility of ambient stratification.

If the Coriolis term f is ignored we have V = 0 and the plume is one-dimensional. For

uniform ambient conditions and no subglacial discharge, the solution is given by (43).

In that case the characteristic length scale over which rotation becomes important is

given by

`f =

(
2E + 3

2
Cd

E

)
∆ρ g sinφ

ρof2
. (84)

Inserting this into the solution (43) to define variable scales results in the dimensionless

model

∇ ·
(
D̂Û

)
= 3

2
|Û|, (85)

∇ ·
(
D̂ÛÛ

)
− f̂(2 + 3

2
Ĉd)D̂V̂ = (2 + 3

2
Ĉd)D∆ρ̂− 3

2
Ĉd|Û|Û , (86)

∇ ·
(
D̂ÛV̂

)
+ f̂(2 + 3

2
Ĉd)D̂Û = − 3

2
Ĉd|Û|V̂ , (87)

∇ ·
(
D̂Û∆ρ̂

)
= 3

2
ˆ̇m, ∇ ·

(
D̂Û∆T̂

)
= 3

2
(1 + Ŝt )|Û|∆T̂a − 3

2
Ŝt ˆ̇m, (88)

with ˆ̇m = |Û|∆T̂ , and where f̂ = f/|f | is the sign of the Coriolis term (negative for the

southern hemisphere), Ĉd = Cd/E and Ŝt = St /E. A solution to this model is shown in

figure 14.
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